To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

A bitruncated cube is a truncated octahedron.
A bitruncated cubic honeycomb - Cubic cells become orange truncated octahedra, and vertices are replaced by blue truncated octahedra.

In geometry, a bitruncation is an operation on regular polytopes. It represents a truncation beyond rectification.[citation needed] The original edges are lost completely and the original faces remain as smaller copies of themselves.

Bitruncated regular polytopes can be represented by an extended Schläfli symbol notation t1,2{p,q,...} or 2t{p,q,...}.

YouTube Encyclopedic

  • 1/3
    Views:
    383
    30 553
    409
  • Full Four by Four Bitruncated Cubic Honeycomb Cube (Zen Magnets)
  • Hypertorus
  • [Tutorial] Bitruncated Cubic Honeycomb Step 1 (Zen Magnets)

Transcription

In regular polyhedra and tilings

For regular polyhedra (i.e. regular 3-polytopes), a bitruncated form is the truncated dual. For example, a bitruncated cube is a truncated octahedron.

In regular 4-polytopes and honeycombs

For a regular 4-polytope, a bitruncated form is a dual-symmetric operator. A bitruncated 4-polytope is the same as the bitruncated dual, and will have double the symmetry if the original 4-polytope is self-dual.

A regular polytope (or honeycomb) {p, q, r} will have its {p, q} cells bitruncated into truncated {q, p} cells, and the vertices are replaced by truncated {q, r} cells.

Self-dual {p,q,p} 4-polytope/honeycombs

An interesting result of this operation is that self-dual 4-polytope {p,q,p} (and honeycombs) remain cell-transitive after bitruncation. There are 5 such forms corresponding to the five truncated regular polyhedra: t{q,p}. Two are honeycombs on the 3-sphere, one a honeycomb in Euclidean 3-space, and two are honeycombs in hyperbolic 3-space.

Space 4-polytope or honeycomb Schläfli symbol
Coxeter-Dynkin diagram
Cell type Cell
image
Vertex figure
Bitruncated 5-cell (10-cell)
(Uniform 4-polytope)
t1,2{3,3,3}
truncated tetrahedron
Bitruncated 24-cell (48-cell)
(Uniform 4-polytope)
t1,2{3,4,3}
truncated cube
Bitruncated cubic honeycomb
(Uniform Euclidean convex honeycomb)
t1,2{4,3,4}
truncated octahedron
Bitruncated icosahedral honeycomb
(Uniform hyperbolic convex honeycomb)
t1,2{3,5,3}
truncated dodecahedron
Bitruncated order-5 dodecahedral honeycomb
(Uniform hyperbolic convex honeycomb)
t1,2{5,3,5}
truncated icosahedron

See also

References

  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 (pp. 145–154 Chapter 8: Truncation)
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26)

External links

Polyhedron operators
Seed Truncation Rectification Bitruncation Dual Expansion Omnitruncation Alternations
t0{p,q}
{p,q}
t01{p,q}
t{p,q}
t1{p,q}
r{p,q}
t12{p,q}
2t{p,q}
t2{p,q}
2r{p,q}
t02{p,q}
rr{p,q}
t012{p,q}
tr{p,q}
ht0{p,q}
h{q,p}
ht12{p,q}
s{q,p}
ht012{p,q}
sr{p,q}
This page was last edited on 24 September 2023, at 05:14
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.