To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Compound of five tetrahedra

From Wikipedia, the free encyclopedia

Compound of five tetrahedra
Type Regular compound
Coxeter symbol {5,3}[5{3,3}] {3,5}[1]
Index UC5, W24
Elements
(As a compound)
5 tetrahedra:
F = 20, E = 30, V = 20
Dual compound Self-dual
Symmetry group chiral icosahedral (I)
Subgroup restricting to one constituent chiral tetrahedral (T)
3D model of a compound of five tetrahedra

The compound of five tetrahedra is one of the five regular polyhedral compounds. This compound polyhedron is also a stellation of the regular icosahedron. It was first described by Edmund Hess in 1876.

It can be seen as a faceting of a regular dodecahedron.

YouTube Encyclopedic

  • 1/3
    Views:
    760
    599
    3 191
  • Compound of five tetrahedra
  • Compound of five tetrahedra
  • Соединение пяти тетраэдров, Compound of five tetrahedra

Transcription

As a compound

It can be constructed by arranging five tetrahedra in rotational icosahedral symmetry (I), as colored in the upper right model. It is one of five regular compounds which can be constructed from identical Platonic solids.

It shares the same vertex arrangement as a regular dodecahedron.

There are two enantiomorphous forms (the same figure but having opposite chirality) of this compound polyhedron. Both forms together create the reflection symmetric compound of ten tetrahedra.

It has a density of higher than 1.


As a spherical tiling

Transparent Models
(Animation)

Five interlocked tetrahedra

As a stellation

It can also be obtained by stellating the icosahedron, and is given as Wenninger model index 24.

Stellation diagram Stellation core Convex hull

Icosahedron

Dodecahedron

As a faceting

Five tetrahedra in a dodecahedron.

It is a faceting of a dodecahedron, as shown at left.

Group theory

The compound of five tetrahedra is a geometric illustration of the notion of orbits and stabilizers, as follows.

The symmetry group of the compound is the (rotational) icosahedral group I of order 60, while the stabilizer of a single chosen tetrahedron is the (rotational) tetrahedral group T of order 12, and the orbit space I/T (of order 60/12 = 5) is naturally identified with the 5 tetrahedra – the coset gT corresponds to which tetrahedron g sends the chosen tetrahedron to.

An unusual dual property

Compound of five tetrahedra

This compound is unusual, in that the dual figure is the enantiomorph of the original. If the faces are twisted to the right, then the vertices are twisted to the left. When we dualise, the faces dualise to right-twisted vertices and the vertices dualise to left-twisted faces, giving the chiral twin. Figures with this property are extremely rare.

See also

References

  1. ^ Regular polytopes, p.98
  • Wenninger, Magnus (1974). Polyhedron Models. Cambridge University Press. ISBN 0-521-09859-9.
  • H.S.M. Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, 3.6 The five regular compounds, pp.47-50, 6.2 Stellating the Platonic solids, pp.96-104
  • Coxeter, Harold Scott MacDonald; Du Val, P.; Flather, H. T.; Petrie, J. F. (1999). The Fifty-Nine Icosahedra (3rd ed.). Tarquin. ISBN 978-1-899618-32-3. MR 0676126. (1st Edn University of Toronto (1938))

External links

Notable stellations of the icosahedron
Regular Uniform duals Regular compounds Regular star Others
(Convex) icosahedron Small triambic icosahedron Medial triambic icosahedron Great triambic icosahedron Compound of five octahedra Compound of five tetrahedra Compound of ten tetrahedra Great icosahedron Excavated dodecahedron Final stellation
The stellation process on the icosahedron creates a number of related polyhedra and compounds with icosahedral symmetry.
This page was last edited on 14 April 2024, at 16:47
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.