To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Dupin indicatrix

From Wikipedia, the free encyclopedia

Dupin indicatrix for a hyperbolic point. You can use your imagination for the cases for parabolic points and elliptic points.

In differential geometry, the Dupin indicatrix is a method for characterising the local shape of a surface. Draw a plane parallel to the tangent plane and a small distance away from it. Consider the intersection of the surface with this plane. The shape of the intersection is related to the Gaussian curvature. The Dupin indicatrix is the result of the limiting process as the plane approaches the tangent plane. The indicatrix was introduced by Charles Dupin.

Equivalently, one can construct the Dupin indicatrix at point p, by first rotating and translating the surface, so that p is at origin, and the tangent plane is the xy-plane. Now the contour plot of the surface are the Dupin indicatrices.

In this picture, we see 5 Dupin indicatrices. Four are elliptical (two for the peaks, two for the basins, but the peaks and the basins are both elliptical points), and one is hyperbolic (the "mountain pass" in the center).

YouTube Encyclopedic

  • 1/3
    Views:
    4 024
    1 077
    2 223
  • DiffGeom33: Meusnier, Monge and Dupin III
  • Dupin's Indicatrix of a Torus
  • Uniaxial Crystal - Negative Optic Sign Indicatrix

Transcription

Classification

For elliptical points where the Gaussian curvature is positive the intersection will either be empty or form a closed curve. In the limit this curve will form an ellipse aligned with the principal directions. The curvature lines make up the major and minor axes of the ellipse.

In particular, the indicatrix of an umbilical point is a circle.

For hyperbolic points, where the Gaussian curvature is negative, the intersection will form a hyperbola. Two different hyperbolas will be formed on either side of the tangent plane. These hyperbolas share the same axis and asymptotes. The directions of the asymptotes are the same as the asymptotic directions.

In particular, the indicatrix of each point on a minimal surface is two lines intersecting at right angles, which each make a 45 degree angle with the two curvature lines.

For parabolic points, where the Gaussian curvature is zero, the intersection will form two parallel lines. The direction of those two lines are the same as the asymptotic directions.

In particular, the indicatrix of each point on a developable surface is a pair of lines parallel to the generatrix.

For more complex cases where all the second-degree derivatives are zero, but higher-degree derivatives are nonzero, the Dupin indicatrix is more complex. For example, the monkey saddle has Dupin indicatrix in the shape of six-pointed hyperbola.

The monkey saddle has a six-pointed hyperbola as a Dupin indicatrix.
Another view of a monkey saddle, this time showing the intersection of the plane with the saddle, and their intersection -- the Dupin indicatrix. Note that this monkey saddle is somewhat unconventional, as it has three "peaks", though it would make for a more comfortable saddle, it does not change the overall shape of the Dupin indicatrix.

See also

References

  • Eisenhart, Luther P. (2004), A Treatise on the Differential Geometry of Curves and Surfaces, Dover, ISBN 0486438201 Full 1909 text (now out of copyright)


This page was last edited on 17 November 2023, at 17:48
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.