To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Hexagonal bipyramid

From Wikipedia, the free encyclopedia

A hexagonal bipyramid is a polyhedron formed from two hexagonal pyramids joined at their bases. The resulting solid has 12 triangular faces, 8 vertices and 18 edges. The 12 faces are identical isosceles triangles.

Although it is face-transitive, it is not a Platonic solid because some vertices have four faces meeting and others have six faces, and it is not a Johnson solid because its faces cannot be equilateral triangles; 6 equilateral triangles would make a flat vertex.

It is one of an infinite set of bipyramids. Having twelve faces, it is a type of dodecahedron, although that name is usually associated with the regular polyhedral form with pentagonal faces.

The hexagonal bipyramid has a plane of symmetry (which is horizontal in the figure to the right) where the bases of the two pyramids are joined. This plane is a regular hexagon. There are also six planes of symmetry crossing through the two apices. These planes are rhombic and lie at 30° angles to each other, perpendicular to the horizontal plane.

YouTube Encyclopedic

  • 1/5
    Views:
    15 212
    1 251
    385
    2 724
    5 484
  • 3x3 Hexagonal Dipyramid
  • Hexagonal Dipyramid
  • SunWinder's Siamese Hexagonal Dipyramid's Cube Puzzle
  • Ryan's 6x6x6 Elite Hexagonal Dipyramid - Handmade Rubik's Cube Type Puzzle
  • Ryan's 7x7x7 Imperial Hexagonal Dipyramid - Handmade Rubik's Cube Type Puzzle

Transcription

Images

It can be drawn as a tiling on a sphere which also represents the fundamental domains of [3,2], *322 dihedral symmetry:

Related polyhedra

The hexagonal bipyramid, dt{2,6}, can be in sequence truncated, tdt{2,6} and alternated (snubbed), sdt{2,6}:

The hexagonal bipyramid, dt{2,6}, can be in sequence rectified, rdt{2,6}, truncated, trdt{2,6} and alternated (snubbed), srdt{2,6}:

Uniform hexagonal dihedral spherical polyhedra
Symmetry: [6,2], (*622) [6,2]+, (622) [6,2+], (2*3)
{6,2} t{6,2} r{6,2} t{2,6} {2,6} rr{6,2} tr{6,2} sr{6,2} s{2,6}
Duals to uniforms
V62 V122 V62 V4.4.6 V26 V4.4.6 V4.4.12 V3.3.3.6 V3.3.3.3

It is the first polyhedra in a sequence defined by the face configuration V4.6.2n. This group is special for having all even number of edges per vertex and form bisecting planes through the polyhedra and infinite lines in the plane, and continuing into the hyperbolic plane for any

With an even number of faces at every vertex, these polyhedra and tilings can be shown by alternating two colors so all adjacent faces have different colors.

Each face on these domains also corresponds to the fundamental domain of a symmetry group with order 2,3,n mirrors at each triangle face vertex.

*n32 symmetry mutation of omnitruncated tilings: 4.6.2n
Sym.
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco. Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]
*∞32
[∞,3]
 
[12i,3]
 
[9i,3]
 
[6i,3]
 
[3i,3]
Figures
Config. 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6.∞ 4.6.24i 4.6.18i 4.6.12i 4.6.6i
Duals
Config. V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6.∞ V4.6.24i V4.6.18i V4.6.12i V4.6.6i
"Regular" right (symmetric) n-gonal bipyramids:
Bipyramid name Digonal bipyramid Triangular bipyramid
(See: J12)
Square bipyramid
(See: O)
Pentagonal bipyramid
(See: J13)
Hexagonal bipyramid Heptagonal bipyramid Octagonal bipyramid Enneagonal bipyramid Decagonal bipyramid ... Apeirogonal bipyramid
Polyhedron image
...
Spherical tiling image
Plane tiling image
Face config. V2.4.4 V3.4.4 V4.4.4 V5.4.4 V6.4.4 V7.4.4 V8.4.4 V9.4.4 V10.4.4 ... V∞.4.4
Coxeter diagram ...

See also

External links

  • Weisstein, Eric W. "Dipyramid". MathWorld.
  • Virtual Reality Polyhedra The Encyclopedia of Polyhedra
This page was last edited on 4 November 2023, at 15:17
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.