To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Octahedral-hexagonal tiling honeycomb

From Wikipedia, the free encyclopedia

Octahedron-hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol {(3,4,3,6)} or {(6,3,4,3)}
Coxeter diagrams or
Cells {3,4}

{6,3}

r{6,3}
Faces triangular {3}
square {4}
hexagon {6}
Vertex figure

rhombicuboctahedron
Coxeter group [(6,3,4,3)]
Properties Vertex-transitive, edge-transitive

In the geometry of hyperbolic 3-space, the octahedron-hexagonal tiling honeycomb is a paracompact uniform honeycomb, constructed from octahedron, hexagonal tiling, and trihexagonal tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

YouTube Encyclopedic

  • 1/3
    Views:
    7 848
    796
    588
  • Let's use Photoshop #1 Creating Honeycomb Background
  • Tessellating rhombic dodecahedra
  • Truncated octahedron

Transcription

Symmetry

A lower symmetry form, index 6, of this honeycomb can be constructed with [(6,3,4,3*)] symmetry, represented by a trigonal trapezohedron fundamental domain, and a Coxeter diagram

.

Related honeycombs

Cyclotruncated octahedral-hexagonal tiling honeycomb

Cyclotruncated octahedral-hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol ct{(3,4,3,6)} or ct{(3,6,3,4)}
Coxeter diagrams or
Cells {6,3}

{4,3}

t{3,4}
Faces triangular {3}
square {4}
hexagon {6}
Vertex figure

triangular antiprism
Coxeter group [(6,3,4,3)]
Properties Vertex-transitive

The cyclotruncated octahedral-hexagonal tiling honeycomb is a compact uniform honeycomb, constructed from hexagonal tiling, cube, and truncated octahedron cells, in a triangular antiprism vertex figure. It has a Coxeter diagram .

Symmetry

A radial subgroup symmetry, index 6, of this honeycomb can be constructed with [(4,3,6,3*)], represented by a trigonal trapezohedron fundamental domain, and Coxeter diagram

.

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 ISBN 0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p212-213)
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapter 16-17: Geometries on Three-manifolds I, II)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups
This page was last edited on 16 January 2024, at 14:44
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.