To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Truncated infinite-order square tiling

From Wikipedia, the free encyclopedia

Infinite-order truncated square tiling
Truncated infinite-order square tiling

Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration ∞.8.8
Schläfli symbol t{4,∞}
Wythoff symbol 2 ∞ | 4
Coxeter diagram
Symmetry group [∞,4], (*∞42)
Dual apeirokis apeirogonal tiling
Properties Vertex-transitive

In geometry, the truncated infinite-order square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{4,∞}.

YouTube Encyclopedic

  • 1/5
    Views:
    12 324
    1 029
    884
    373
    56 917
  • Mod-01 Lec-06 Geometry of Crystals: Symmetry, Lattices
  • 8. Quasi-Newton-Raphson Methods
  • Atlantean Daily Life (1/14): Housing (a lecture by: Jonathan Barlow Gee)
  • Rethinking Pei: A Centenary Symposium, Panel 3: Power, Capital, and People
  • Lec-1 Structure of Materials Part-I

Transcription

Uniform color

In (*∞44) symmetry this tiling has 3 colors. Bisecting the isosceles triangle domains can double the symmetry to *∞42 symmetry.

Symmetry

The dual of the tiling represents the fundamental domains of (*∞44) orbifold symmetry. From [(∞,4,4)] (*∞44) symmetry, there are 15 small index subgroup (11 unique) by mirror removal and alternation operators. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. The symmetry can be doubled to *∞42 by adding a bisecting mirror across the fundamental domains. The subgroup index-8 group, [(1+,∞,1+,4,1+,4)] (∞22∞22) is the commutator subgroup of [(∞,4,4)].

Small index subgroups of [(∞,4,4)] (*∞44)
Fundamental
domains




Subgroup index 1 2 4
Coxeter
(orbifold)
[(4,4,∞)]

(*∞44)
[(1+,4,4,∞)]

(*∞424)
[(4,4,1+,∞)]

(*∞424)
[(4,1+,4,∞)]

(*∞2∞2)
[(4,1+,4,1+,∞)]

2*∞2∞2
[(1+,4,4,1+,∞)]

(∞*2222)
[(4,4+,∞)]

(4*∞2)
[(4+,4,∞)]

(4*∞2)
[(4,4,∞+)]

(∞*22)
[(1+,4,1+,4,∞)]

2*∞2∞2
[(4+,4+,∞)]

(∞22×)
Rotational subgroups
Subgroup index 2 4 8
Coxeter
(orbifold)
[(4,4,∞)]+

(∞44)
[(1+,4,4+,∞)]

(∞323)
[(4+,4,1+,∞)]

(∞424)
[(4,1+,4,∞+)]

(∞434)
[(1+,4,1+,4,1+,∞)] = [(4+,4+,∞+)]

(∞22∞22)

Related polyhedra and tiling

*n42 symmetry mutation of truncated tilings: n.8.8
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracompact
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
Truncated
figures
Config. 2.8.8 3.8.8 4.8.8 5.8.8 6.8.8 7.8.8 8.8.8 ∞.8.8
n-kis
figures
Config. V2.8.8 V3.8.8 V4.8.8 V5.8.8 V6.8.8 V7.8.8 V8.8.8 V∞.8.8
Paracompact uniform tilings in [∞,4] family
{∞,4} t{∞,4} r{∞,4} 2t{∞,4}=t{4,∞} 2r{∞,4}={4,∞} rr{∞,4} tr{∞,4}
Dual figures
V∞4 V4.∞.∞ V(4.∞)2 V8.8.∞ V4 V43.∞ V4.8.∞
Alternations
[1+,∞,4]
(*44∞)
[∞+,4]
(∞*2)
[∞,1+,4]
(*2∞2∞)
[∞,4+]
(4*∞)
[∞,4,1+]
(*∞∞2)
[(∞,4,2+)]
(2*2∞)
[∞,4]+
(∞42)

=

=
h{∞,4} s{∞,4} hr{∞,4} s{4,∞} h{4,∞} hrr{∞,4} s{∞,4}
Alternation duals
V(∞.4)4 V3.(3.∞)2 V(4.∞.4)2 V3.∞.(3.4)2 V∞ V∞.44 V3.3.4.3.∞

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links

This page was last edited on 12 December 2023, at 21:57
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.