To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Two-dimensional gas

From Wikipedia, the free encyclopedia

A two-dimensional gas is a collection of objects constrained to move in a planar or other two-dimensional space in a gaseous state. The objects can be: classical ideal gas elements such as rigid disks undergoing elastic collisions; elementary particles, or any ensemble of individual objects in physics which obeys laws of motion without binding interactions. The concept of a two-dimensional gas is used either because:

  1. the issue being studied actually takes place in two dimensions (as certain surface molecular phenomena); or,
  2. the two-dimensional form of the problem is more tractable than the analogous mathematically more complex three-dimensional problem.

While physicists have studied simple two body interactions on a plane for centuries, the attention given to the two-dimensional gas (having many bodies in motion) is a 20th-century pursuit. Applications have led to better understanding of superconductivity,[1] gas thermodynamics, certain solid state problems and several questions in quantum mechanics.

YouTube Encyclopedic

  • 1/3
    Views:
    2 795 001
    23 629
    728 150
  • What is a dimension? In 3D...and 2D... and 1D
  • The Facinating Quantum World of Two-dimensional Materials
  • This 3D Quantum Gas Clock Could Redefine Time

Transcription

How do we know we live in three dimensions? Here's a clue: it's not just that we have to use three coordinates (like x,y,z, or latitude, longitude, altitude) to label every point in space - because we don't! Mathematicians have showed that it's possible to fill up 2d or 3d space using a one-dimensional "space-filling" curve - that means that every point in 3d space can be labelled using just one coordinate: our position along the curve! (it also means that a square and its side contain the same number of points - crazy, right?) So how do we know that we live in three-dimensional space and not on a one-dimensional line curled up so much that it looks three-dimensional? Well, the short answer is that we don't know – but we DO know that it looks 3d. So how do we test that? One way is to look at diffusion of gas - that is, how a gas spreads out over time. We just measure the ratio between volume and radius of the gas cloud: In one dimension, radius and volume are the same! (up to a factor) In 2d, "volume" means area - or radius squared, and in 3d, "volume" is radius cubed, and so on for higher dimensions… and 3d is what we see. So basically, determining how many dimensions we live in is just a bunch of hot air!

Classical mechanics

Two-dimensional elastic collision

Research at Princeton University in the early 1960s[2] posed the question of whether the Maxwell–Boltzmann statistics and other thermodynamic laws could be derived from Newtonian laws applied to multi-body systems rather than through the conventional methods of statistical mechanics. While this question appears intractable from a three-dimensional closed form solution, the problem behaves differently in two-dimensional space. In particular an ideal two-dimensional gas was examined from the standpoint of relaxation time to equilibrium velocity distribution given several arbitrary initial conditions of the ideal gas. Relaxation times were shown to be very fast: on the order of mean free time .

In 1996 a computational approach was taken to the classical mechanics non-equilibrium problem of heat flow within a two-dimensional gas.[3] This simulation work showed that for N>1500, good agreement with continuous systems is obtained.

Electron gas

Diagram of cyclotron operation from Lawrence's 1934 patent.

While the principle of the cyclotron to create a two-dimensional array of electrons has existed since 1934, the tool was originally not really used to analyze interactions among the electrons (e.g. two-dimensional gas dynamics). An early research investigation explored cyclotron resonance behavior and the de Haas–van Alphen effect in a two-dimensional electron gas.[4] The investigator was able to demonstrate that for a two-dimensional gas, the de Haas–van Alphen oscillation period is independent of the short-range electron interactions.

Later applications to Bose gas

In 1991 a theoretical proof was made that a Bose gas can exist in two dimensions.[5] In the same work an experimental recommendation was made that could verify the hypothesis.

Experimental research with a molecular gas

In general, 2D molecular gases are experimentally observed on weakly interacting surfaces such as metals, graphene etc. at a non-cryogenic temperature and a low surface coverage. As a direct observation of individual molecules is not possible due to fast diffusion of molecules on a surface, experiments are either indirect (observing an interaction of a 2D gas with surroundings, e.g. condensation of a 2D gas) or integral (measuring integral properties of 2D gases, e.g. by diffraction methods).

An example of the indirect observation of a 2D gas is the study of Stranick et al. who used a scanning tunnelling microscope in ultrahigh vacuum (UHV) to image an interaction of a two-dimensional benzene gas layer in contact with a planar solid interface at 77 kelvins.[6] The experimenters were able to observe mobile benzene molecules on the surface of Cu(111), to which a planar monomolecular film of solid benzene adhered. Thus the scientists could witness the equilibrium of the gas in contact with its solid state.

Integral methods that are able to characterize a 2D gas usually fall into a category of diffraction (see for example study of Kroger et al.[7]). The exception is the work of Matvija et al. who used a scanning tunneling microscope to directly visualize a local time-averaged density of molecules on a surface.[8] This method is of special importance as it provides an opportunity to probe local properties of 2D gases; for instance it enables to directly visualize a pair correlation function of a 2D molecular gas in a real space.

If the surface coverage of adsorbates is increased, a 2D liquid is formed,[9] followed by a 2D solid. It was shown that the transition from a 2D gas to a 2D solid state can be controlled by a scanning tunneling microscope which can affect the local density of molecules via an electric field.[10]

Implications for future research

A multiplicity of theoretical physics research directions exist for study via a two-dimensional gas, such as:[citation needed]

See also

References

  1. ^ Feld; et al. (2011). "Observation of a pairing pseudogap in a two-dimensional gas". Nature. 480 (7375): 75–78. arXiv:1110.2418. Bibcode:2011Natur.480...75F. doi:10.1038/nature10627. PMID 22129727. S2CID 4425050.
  2. ^ C.M.Hogan, Non-equilibrium statistical mechanics of a two-dimensional gas, Dissertation, Princeton University, Department of Physics, May 4, 1964
  3. ^ D. Risso and P. Cordero, Two-Dimensional Gas of Disks: Thermal Conductivity, Journal of Statistical Physics, volume 82, pages 1453–1466, (1996)
  4. ^ Kohn, Walter (1961). "Cyclotron Resonance and de Haas–van Alphen Oscillations of an Interacting Electron Gas". Physical Review. 123 (4): 1242–1244. Bibcode:1961PhRv..123.1242K. doi:10.1103/physrev.123.1242.
  5. ^ Vanderlei Bagnato and Daniel Kleppner. Bose–Einstein condensation in low-dimensional traps, American Physical Society, 8 April 1991
  6. ^ Stranick, S. J.; Kamna, M. M.; Weiss, P. S, Atomic Scale Dynamics of a Two-Dimensional Gas-Solid Interface, Pennsylvania State University, Park Dept. of Chemistry, 3 June 1994
  7. ^ Kroger, I. (2009). "Tuning intermolecular interaction in long-range-ordered submonolayer organic films". Nature Physics. 5 (2): 153–158. Bibcode:2009NatPh...5..153S. doi:10.1038/nphys1176.
  8. ^ Matvija, Peter; Rozbořil, Filip; Sobotík, Pavel; Ošťádal, Ivan; Kocán, Pavel (2017). "Pair correlation function of a 2D molecular gas directly visualized by scanning tunneling microscopy". The Journal of Physical Chemistry Letters. 8 (17): 4268–4272. doi:10.1021/acs.jpclett.7b01965. PMID 28830146.
  9. ^ Thomas Waldmann; Jens Klein; Harry E. Hoster; R. Jürgen Behm (2012), "Stabilization of Large Adsorbates by Rotational Entropy: A Time-Resolved Variable-Temperature STM Study", ChemPhysChem (in German), vol. 14, no. 1, pp. 162–169, doi:10.1002/cphc.201200531, PMID 23047526, S2CID 36848079
  10. ^ Matvija, Peter; Rozbořil, Filip; Sobotík, Pavel; Ošťádal, Ivan; Pieczyrak, Barbara; Jurczyszyn, Leszek; Kocán, Pavel (2017). "Electric-field-controlled phase transition in a 2D molecular layer". Scientific Reports. 7 (1): 7357. Bibcode:2017NatSR...7.7357M. doi:10.1038/s41598-017-07277-7. PMC 5544747. PMID 28779091.

External links

This page was last edited on 23 April 2024, at 00:00
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.