To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Spark between anode and cathode, triggered by the third electrode inside the inner quartz tube. The inner tube serves as a guide for the spark and to cool it even faster. The outer tube muffles the explosive sound that the spark produces.
A photo of a Smith & Wesson Model 686 firing, taken with the flash above. The photo was taken in a darkened room, with the camera's shutter open, and the flash was triggered by the sound of the shot using a microphone.
Ultra-high-speed photo of a bullet travelling at about 870 metres per second (2,850 ft/s).
Air-gap flash spectrum generated with a grating.
Upper half shows the air-gap in daylight. Lower half shows the phosphorescence of the quartz ignition tube in blue in a darkened environment after a flash has occurred.

An air-gap flash is a photographic light source capable of producing sub-microsecond light flashes, allowing for (ultra) high-speed photography. This is achieved by a high-voltage (20 kV typically) electric discharge between two electrodes over the surface of a quartz (or glass) tube. The distance between the electrodes is such that a spontaneous discharge does not occur. To start the discharge a high-voltage pulse (70 kV for example) is applied on an electrode inside the quartz tube.

The flash can be triggered electronically by being synchronised with an electronic detection device such as a microphone or an interrupted laser beam in order to illuminate a fast event. A sub-microsecond flash is fast enough to photographically capture a supersonic bullet in flight without noticeable motion blur.

YouTube Encyclopedic

  • 1/5
    Views:
    7 757
    1 232
    774
    1 710
    717
  • TPB #67 - New Airgap Flash
  • DL#041 - Palflash Air Gap Flash Trigger Part 4
  • TPB #77 - Maintenance on the Airgap Flash
  • DL#034 - Project: Palflash 500 Air Gap Flash Part 2
  • TPB #86 - Adjusting the Airgap Flash's Voltage/Brightness

Transcription

History

The person credited with popularising the flash is Harold Eugene Edgerton, though the earlier scientist Ernst Mach also used a spark gap as a fast photographic lighting system. William Henry Fox Talbot is said to have created the first spark-based flash photo, using a Leyden jar, the original form of the capacitor. Edgerton was one of the founders of EG&G company who sold an air-gap flash under the name Microflash 549.[1] There are several commercial flashes available today.

Design parameters

The aim of a high-speed flash is to be very fast and yet bright enough for adequate exposure. An air-gap flash system typically consists of a capacitor that is discharged through a gas (air in this case). The speed of a flash is mainly determined by the time it takes to discharge the capacitor through the gas. This time is proportional to

,

in which L is the inductance and C the capacitance of the system. To be fast, both L and C must be kept small.

The brightness of the flash is proportional to the energy stored in the capacitor:

,

where V is the voltage across the capacitor. This shows that high brightness calls for a large capacitance and a high voltage. However, since a large capacitance would have a relatively long discharge time that would make the flash slow, the only practical solution is to use a very high voltage on a relatively small capacitor, with a very low inductance. Typical values are 0.05 µF capacitance, 0.02 µH inductance, 10 J energy, 0.5 µs duration and about 20 MW power.[2]

Air (mainly nitrogen) is preferred as a gas because it is fast. Although xenon has a much higher efficiency in converting energy into light, xenon (because of its afterglow) cannot achieve a flash pulse duration less than about 10 microseconds.

The spark is guided over a quartz surface to improve the light output and benefit from the cooling capacity, making the flash faster.[3][4] This has a negative effect in the form of quartz erosion because of high energy discharge.

Spectral properties

Since the spark gap discharges in air generating a plasma, the spectrum shows both a continuum and spectral lines, mainly of nitrogen since air is 79% nitrogen. The spectrum is rich in UV but covers the entire visible range down to infra-red. When a quartz tube is used as ignition tube, it shows a clear phosphorescence in blue after the flash, induced by the UV.

References

  1. ^ "Microflash 549 Manual" (PDF). rit.edu. Retrieved 4 May 2023.
  2. ^ Edgerton, Harold E. (19706). Electronic flash, strobe, Chapter 7, Mc Graw Hill, New-York. ISBN 007018965X / 0-07-018965-x.
  3. ^ Topler, M, Ann Physik, vol. 4, no. 27, pp 1043-1050, 1908
  4. ^ Edgerton, H. E. K, K. Cooper and J. Tredwell, Submicrosecond Flash Source, J. SMTPE, vol. 70, p. 117, March, 1961

External links

This page was last edited on 23 June 2023, at 04:18
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.